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SUMMARY 

An inexpensive, finite difference numerical method is developed for the approximate solution of 
general, free surface, porous flow problems. The method is so designed that the required numerical 
boundary conditions coincide exactly with the required physical boundary conditions. In the present 
paper, application is made to prototype, steady state, dam Bow problems. 
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1. INTRODUCTION 

Porous flow is of interest, for example, to mathematicians, geologists, ecologists, civil 
engineers and fluid dynamicists (see, e.g., References 1,9,  11 and the numerous additional 
reverences contained therein). Models are usually,” but not always,8 formulated in terms of 
classical continuum mechanics, with equations of motion often being highly non-linear. 
Related problems are further complicated by the presence of a free boundary, and most 
modern computer methodology has been applicable only under highly restrictive assump- 

In this paper we will develop a method for general, continuum formulated, free surface, 
porous flow problems. The method is analogous to that developed recently by Casulli3, who 
showed that combining the Los Alamos MAC method for Navier-Stokes p r o b l e m ~ ~ ~ - ~ ~  with 
the Courant-Isaacson-Rees method for hyperbolic systems6 leads to a new method which is 
more powerful than either of its constituents. This new method allows for thermal, non- 
homogeneous and three-dimensional considerations. 

tions.5.7.10.1 1,13 

2. GOVERNING EQUATIONS 

For simplicity only, let us consider the flow of a homogeneous fluid in a porous medium. The 
governing three-dimensional equations are derived from the principles of conservation of 
momentum and mass, and are given as  follow^.'^ The generalized Darcy’s equation of 
motion is 

l D u ,  &$ V 
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where q is the porosity of the medium, u is the seepage fluid velocity, Cp is the ratio of 
pressure to the constant density of the fluid, X is a body force, v is the kinematic viscosity 
coefficient, and k is the permeability of the medium. The equation of continuity for an 
incompressible fluid is 

where, as usual, repetition of indices denotes summation. For any free surface which can be 
represented as a single valued function x3 = h(x,, x2, t) the change in surface elevation is 
determined’’ by the kinematic condition 

where qs is the porosity of 
velocity at the fluid surface. 

the medium at the free surface, and where us is the seepage 

The governing two-dimensional equations for the models most often considered can now 
be derived from system (1)-(3) as follows. The temporal acceleration term in Darcy’s law, as 
stressed by Yih (Reference 14, p. 277) must be considered in the formulation of transient 
problems, so that it has not been retained to allow a false transient numerical procedure to 
be used. However, convective acceleration in (1) is relatively insignificant and can be 
neglected. Thus, in the usual notation, we arrive at 

with the free surface equation 

ah  ah 
qs -+ us - = v,. 

a t  ax 

In applying (4) and (3, the following initial conditions are employed: 

4x3 Y, to) =vo(x, Y )  
4x9 y, to) = U o ( &  Y )  

h(x, to) = hob) 

. I 
The boundary conditions for (4) are given by assigning either the pressure Cps or the normal 
velocity u, as a function of time on the boundary. In particular, at the free surface the 
pressure is zero at all times, while at the impenetrable boundaries the normal velocity is zero. 

The free surface equation ( 5 )  needs one boundary condition at the point of intersection 
with the fixed boundary only if the fixed boundary is an inflow boundary at such a point.2 In 
this case the surface height h(x, t) must be specified at this point as a function of time. 

Further consideration about boundary conditions will be given in Section 5 .  
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3 .  DIFFERENCE APPROXIMATIONS FOR THE EQUATIONS OF MOTION 

Our finite approximations for system (4) are based on the MAC (Marker-and-Cell) 
method'"*'3 and can be extended, if desired, in a direct way to system (1)-(2). Specifically, 
the finite difference mesh consists of rectangular cells of width A x  and height Ay. The field 
variables u, u and 4 are defined at the locations shown in Figure 1: the u component of 
velocity is defined at the centre of each vertical side of a cell, the u component of velocity at 
the centre of each horizontal side, and the pressure b, at each cell centre. 

The finite difference equations corresponding to the first two equations of system (4), that 
is, to Darcy's equations, are 

Of course, implementation of (7) requires first the determination of the pressure field (b::;, 
which is accomplished as follows. 

The finite difference equation corresponding to the last equation of system (4), that is, the 
incompressibility condition, in each cell is given by 

As in Reference 3 ,  the pressure field 4;;; at the centre of each cell must be computed in 
such a way that the discrete incompressibility condition (8) is valid throughout. To find a 
difference equation for the pressure, we require that the seepage velocity components 
computed with (7) satisfy (8). We first define 

Figure 1. Positions of field variables 
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so that (7) become 

V. CASULLI AND D. GREENSPAN 

Substitution of (9) into (8) yields the following finite difference equation for pressure: 

. (10) Frt",ti - FY-$,j G;,+$ - G;i-$ + - - 
(At) (Ax) (At) (AY) 

Equation (10) is then solved at each time step by iteration. 

equation. 
Note that for constant porosity q, equation (10) reduces to a finite difference Poisson 

4. APPROXIMATION OF FREE SURFACE MOTION 

A finite difference scheme which discretizes the free surface equation ( 5 )  and simultaneously 
allows for the correct physical boundary conditions2 is the Courant, Isaacson and Rees 
method, which is implemented as follows. The surface height hr+$ is defined on each vertical 
grid line and the equation ( 5 )  is approximated by 

where 

Ah;++= hy+',q- hy-4, if u; 2 0  
Ah:++= h:+$- hy++, if u; ( 0 .  

The coefficients u; and u: in (11) are obtained as weighted averages of the nearest cell 
velocities. 

5.  BOUNDARY CONDITIONS 

To find seepage velocities with (7), a knowledge of the pressure field r#$T& is required at each 
cell centre, including the boundary cells, which are crossed by boundary lines. For very 
general boundary configurations and conditions, then, the following special considerations 
will be applied to boundary cells. 

When the pressure & is specified as a boundary condition, the pressure +$ at the 
boundary cell centre is chosen such that a linear interpolation between it and the pressure in 
the nearest cell yields the boundary pressure 4,. As an example, the pressure 4LTl for the 
situation illustrated in Figure 2 is given by 

4 ; p  = (1 - q ) & p l  + q+,, (12) 
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Figure 2. Boundary configuration 

where 

Particular care must be taken also where the normal seepage u, is prescribed on a 
boundary. In this connection, note that (8) can be rewritten as 

which has the following physical meaning: the volume of fluid entering cell ( i ,  j )  must balance 
the volume of fluid leaving the cell. It is this principle which is applied to a cell crossed by the 
boundary. With reference to Figure 3,  where u, denotes the normal velocity at which the 
fluid enters cell (i, j )  through the boundary, the analogue of (13) in such a cell is given by 

v .  . 
I , J * $  

Figure 3. Boundary configuration 
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The finite difference equation for pressure in a boundary cell is obtained by substituting (9) 
into (14): 

The set of equations (10) and (12) or (15) for the boundary cells form a linear system of 
equations for the unknowns 4;;;. 

With regard to free surface equation (11), note that the term Ah:+; is always defined at the 
boundary except  when such a boundary is an inflow boundary.2 Hence, in this case, the free 
surface height has to be given as a function of time. 

6. STABILITY AND ACCURACY CONSIDERATIONS. 

The finite difference equations (7) and (10) are second-order accurate in space and first order 
in time, while (11) is first-order accurate in space and in time. Note that since the 
incompressibility conditions (8) and (14) are satisfied, the numerical scheme conserves 
regorously the fluid volume in each cell. 

7. COMPUTER ALGORITHM AND EXAMPLES. 

The algorithm for proceeding from time step t, to time tnil can be described easily in 
three steps. Step  1: Determine intermediate values of seepage velocities by explicit calcula- 
tions with (7), using the pressure and velocities at t,. Step 2: Determine the pressure field so 
that incompressibility condition (8) or (14) is satisfied in each cell. This stage is done 
iteratively by calculating a pressure change with which (8) and (14) will be satisfied and then 
adjusting the vel~cit ies.~ As a starting point of the iterative procedure, the intermediate 
values are taken from Step 1. Step 3: Determine the new free surface positions by an explicit 
calculation with (1 1). 

For the interested reader, a typical FORTRAN program is provided in the Appendix of 
Reference 4. 

Let us consider now a prototype, non-trivial problem of broad general interest. Consider 
the earth dam shown in Figure 4. The two-dimensional Bow domain is ABCDE. In such a 
domain, the fluid flow is described by system (4) and the free surface, represented by curve 
BC, is described by equation (5) .  The fluid levels d, and d, are fixed so that the positions of 
A, B, D and E are known. The problem is to determine the free surface curve h(x, t) and 
the point C. Thus, the problem is, in fact, a steady state problem. 

As a particular case, let d, = 1.8, d, = 0-6, B = (0.9,1.S), D = (3.4,0.6), E = (4.0,0-0), M = 

(1.0,2.0), N = (2.0,2.0), q = 0.1, - = g = 1.0. At to = 0, the initial velocity components are 

uo = uo = 0. The boundary conditions are 

v 
k 

4=0, on BCD 
4 =g(d,-y), on AB 
+=8(db-Y), on DE 
u = 0 ,  on AE. 
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Figure 4. Schematic diagram of an earth dam configuration 

Since the boundary AB will be an inflow boundary while CDE will be an outflow boundary, 
the boundary condition for free surface equation (5) is given simply be 

h(2, t )  = d,, o 6 t. 

The numerical method was applied with Ax = 0.1 and Ay = 0.2, and by enclosing the 
configuration in a rectangle with vertices (0, O), (4,0), (4,2*6), (0,2.6), which yields a grid of 
40 by 13 cells. The time step was At = 0.05. In our first example the initial guess of the free 
surface is a straight line from B to D. Whenever the method yielded an h which was above 
boundary segment NE, the value of h was reset to the height of NE at the same x value, 
which is physically correct. Figure 5 shows the free surface positions at the times t = 
0,1,2,3,10. At t = 10, the free surface was no longer changing, and is, then, the desired 
steady state solution. In our second example, the initial free surface configuration is the 
horizontal straight line through B. Figure 6 shows the free surface positions, again, at times 
t = 0,1,2,3,  20. As expected, the steady state configuration at t = 10 is identical with that of 
the first example. 

The running time on the IBM-370 at the University of Texas for each example described 
above was only 1 minute 25 seconds. 

A variety of computer examples for simpler problems, in which the sides of the dam were 
vertical, yielded results which were identical to those which had been obtained previously by 
others.' 

Figure 5 
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Figure 6 

8. CONCLUSION. 

The method presented in this paper is a new, finite difference method for free surface, 
porous flow problems. The method is fast, economical and accurate. It applies to general 
boundary configurations and conserves rigorously the fluid volume in each cell. Application 
in the present paper has been to a class of steady state problems. Application in a 
forthcoming paper will be to transient, porous, two-fluid flow for both the miscible and 
immiscible cases. 
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